Buenas !
Estaba planeando escribir un par de posts sobre las características de Inteligencia Artificial en la suite de Microsoft, cuando comprobé esta característica disponible en CustomVision.ai.
El año pasado, Microsoft lanzó un programa llamado [Vision AI Developer Kit for IoT Solution Makers]
Integrado con Azure IoT Edge y trabajando con el servicio de aprendizaje automático de Microsoft Azure (versión preliminar pública), este kit de inicio de Azure IoT permite a los desarrolladores crear una solución de IA de visión y ejecutar sus modelos de IA en el dispositivo.
El dispositivo utiliza la plataforma de inteligencia de Qualcomm Vision para la aceleración de hardware del modelo de AI para ofrecer un rendimiento de inferencia superior. Y está diseñado específicamente para implementar modelos de AI creados con Azure Machine learning con Azure IoT Edge.
Después de leer un poco me di cuenta, que también se puede desplegar en esta cámara, Modelos ONNX de la galería de Azure AI, modelos de Azure ML y, por supuesto, modelos personalizados creados con CustomVision.ai. Todo es compatible y administrado con Azure IoT Edge.
Por lo tanto, ahora es el momento de comprobar mis fechas de entrega para ver cuánto tiempo tengo que esperar a que llegue mi dispositivo y empezar a comprobar la opción de exportación disponible en el portal CustomVision.ai!
Happy Coding!
Saludos @ Toronto
El Bruno
References
- Microsoft Blog, Accelerating AI on the intelligent edge: Microsoft and Qualcomm create vision AI developer kit
- Vision AI Developer Kit for IoT Solution Makers
- IoT in Action, The AI Camera by eInfochips™– Webinar
My posts on Custom Visopn
- Object recognition with Custom Vision and ONNX in Windows applications using WinML
- Object recognition with Custom Vision and ONNX in Windows applications using WinML
- Object recognition with Custom Vision and ONNX in Windows applications using Windows ML, drawing frames
- Object recognition with Custom Vision and ONNX in Windows applications using Windows ML, calculate FPS
- Can’t install Docker on Windows 10 Home, need Pro or Enterprise
- Running a Custom Vision project in a local Docker Container
- Analyzing images in a Console App using a Custom Vision project in a Docker Container
- Analyzing images using PostMan from a Custom Vision project hosted in a Docker Container
- Building the CustomVision.ai project in Docker in a RaspberryPi
- Container dies immediately upon successful start in a RaspberryPi. Of course, it’s all about TensorFlow dependencies
- About ports, IPs and more to access a container hosted in a Raspberry Pi
- Average response times using a CustomVision.ai docker container in a RaspberryPi and a PC
Windows 10 and YOLOV2 for Object Detection Series
- Introduction to YoloV2 for object detection
- Create a basic Windows10 App and use YoloV2 in the camera for object detection
- Transform YoloV2 output analysis to C# classes and display them in frames
- Resize YoloV2 output to support multiple formats and process and display frames per second
- How to convert Tiny-YoloV3 model in CoreML format to ONNX and use it in a Windows 10 App
- Updated demo using Tiny YOLO V2 1.2, Windows 10 and YOLOV2 for Object Detection Series
- Alternatives to Yolo for object detection in ONNX format