#AI – Los proyectos de CustomVision.ai se pueden exportar para ser utilizados con el Vision AI Developer Kit

Buenas !

Estaba planeando escribir un par de posts sobre las características de Inteligencia Artificial en la suite de Microsoft, cuando comprobé esta característica disponible en CustomVision.ai.

Custom Vision export to Vision AI Dev Kit.jpg

El año pasado, Microsoft lanzó un programa llamado [Vision AI Developer Kit for IoT Solution Makers]

Integrado con Azure IoT Edge y trabajando con el servicio de aprendizaje automático de Microsoft Azure (versión preliminar pública), este kit de inicio de Azure IoT permite a los desarrolladores crear una solución de IA de visión y ejecutar sus modelos de IA en el dispositivo.

vision ai dev kit camera.png

El dispositivo utiliza la plataforma de inteligencia de Qualcomm Vision para la aceleración de hardware del modelo de AI para ofrecer un rendimiento de inferencia superior. Y está diseñado específicamente para implementar modelos de AI creados con Azure Machine learning con Azure IoT Edge.

Después de leer un poco me di cuenta, que también se puede desplegar en esta cámara, Modelos ONNX de la galería de Azure AI, modelos de Azure ML y, por supuesto, modelos personalizados creados con CustomVision.ai. Todo es compatible y administrado con Azure IoT Edge.

Por lo tanto, ahora es el momento de comprobar mis fechas de entrega para ver cuánto tiempo tengo que esperar a que llegue mi dispositivo y empezar a comprobar la opción de exportación disponible en el portal CustomVision.ai!

Happy Coding!

Saludos @ Toronto

El Bruno

References

My posts on Custom Visopn

  1. Object recognition with Custom Vision and ONNX in Windows applications using WinML
  2. Object recognition with Custom Vision and ONNX in Windows applications using WinML
  3. Object recognition with Custom Vision and ONNX in Windows applications using Windows ML, drawing frames
  4. Object recognition with Custom Vision and ONNX in Windows applications using Windows ML, calculate FPS
  5. Can’t install Docker on Windows 10 Home, need Pro or Enterprise
  6. Running a Custom Vision project in a local Docker Container
  7. Analyzing images in a Console App using a Custom Vision project in a Docker Container
  8. Analyzing images using PostMan from a Custom Vision project hosted in a Docker Container
  9. Building the CustomVision.ai project in Docker in a RaspberryPi
  10. Container dies immediately upon successful start in a RaspberryPi. Of course, it’s all about TensorFlow dependencies
  11. About ports, IPs and more to access a container hosted in a Raspberry Pi
  12. Average response times using a CustomVision.ai docker container in a RaspberryPi and a PC

Windows 10 and YOLOV2 for Object Detection Series

 

Advertisement

Leave a comment

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: