#AI – CustomVision.ai project now can export directly toVision AI Developer Kit

Hi !

I was planning to write a couple of posts about Artificial Intelligence features in the Microsoft Suite, when I checked this feature available in CustomVision.ai.

Custom Vision export to Vision AI Dev Kit.jpg

Last year, Microsoft released a program named [Vision AI Developer Kit for IoT Solution Makers]

Integrated with Azure IoT Edge and working with the Microsoft Azure Machine Learning service (public preview), this Azure IoT Starter kit enables developers to build vision AI solution and run their AI models on the device.

vision ai dev kit camera.png

The device uses the Qualcomm vision intelligence platform for hardware acceleration of the AI model to deliver superior inferencing performance. And is specifically designed to deploy AI models built using Azure Machine Learning with Azure IoT Edge.

I just realize that you can also deploy to this camera, ONNX models from Azure AI Gallery, Azure ML models and of course, custom models created using CustomVision.ai. It’s all supported and managed using Azure IoT Edge.

So, now it’s time to check my delivery dates to see how much time I need to wait for my device to arrive and start to check the export option available in the CustomVision.ai portal!

Happy Coding!

Greetings @ Burlington

El Bruno

References

My posts on Custom Visopn

  1. Object recognition with Custom Vision and ONNX in Windows applications using WinML
  2. Object recognition with Custom Vision and ONNX in Windows applications using WinML
  3. Object recognition with Custom Vision and ONNX in Windows applications using Windows ML, drawing frames
  4. Object recognition with Custom Vision and ONNX in Windows applications using Windows ML, calculate FPS
  5. Can’t install Docker on Windows 10 Home, need Pro or Enterprise
  6. Running a Custom Vision project in a local Docker Container
  7. Analyzing images in a Console App using a Custom Vision project in a Docker Container
  8. Analyzing images using PostMan from a Custom Vision project hosted in a Docker Container
  9. Building the CustomVision.ai project in Docker in a RaspberryPi
  10. Container dies immediately upon successful start in a RaspberryPi. Of course, it’s all about TensorFlow dependencies
  11. About ports, IPs and more to access a container hosted in a Raspberry Pi
  12. Average response times using a CustomVision.ai docker container in a RaspberryPi and a PC

Windows 10 and YOLOV2 for Object Detection Series

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.