Buenas !
Durante las ultimas semanas he escrito mucho sobre Custom Vision, ejemplos sobre como exportar modelos a formato ONNX o a imágenes para Docker; y luego utilizar estos modelos en apps de Consola, o en UWP Apps, inclusive con Docker en una Raspberry Pi. A este post lo tengo en borrador desde hace un tiempo, por lo que lo mejor sera que lo publique lo antes posible.
Si eres usuario de CustomVision.ai, seguramente has visto el siguiente mensaje cuando accedes al portal. El mismo nos avisa que el servicio dejara de estar disponible en modo preview / test el día 2019-03-19. Esto implica que si quieres seguir utilizando CV, debes mover tus proyectos a Azure.
Una opción puede ser crear nuevamente los proyectos de CV, cargar las imágenes y hacer todo el proceso de etiquetado y entrenamiento desde cero. Esa opción es valida. Sin embargo, los nuevos proyectos tendrán nuevos IDs y también nuevas URLs para acceder a los HTTP EndPoints de los mismos. La otra opción es [mover a Azure] los proyectos de CV.
Lo primero que debemos hacer es crear un Custom Vision resource en una suscripción de Azure. Si conoces Azure estos son 2 clics, y muy fáciles.
Podemos seguir utilizando un plan Free, con los siguientes parámetros:
- Up to 2 projects
- Limit of 5000 training images
- 2 transactions per seconds
- Limit of 10000 predictions per month
Una vez creado el resource en Azure, debemos volver al portal de CustomVision.ai, seleccionar el proyecto que queremos migrar y en la sección Settings veremos una opcion [Move to Azure] en la esquina izquierda inferior.
Teniendo en cuenta que solo podemos usar Proyectos de CV en una única región, por ahora, tendremos que completar los datos para mover el proyecto. Y listo! El proyecto de CV esta migrado a Azure 😀
Happy Coding!
Greetings @ Toronto
El Bruno
Resources
- Object recognition with Custom Vision and ONNX in Windows applications using WinML
- Object recognition with Custom Vision and ONNX in Windows applications using WinML
- Object recognition with Custom Vision and ONNX in Windows applications using Windows ML, drawing frames
- Object recognition with Custom Vision and ONNX in Windows applications using Windows ML, calculate FPS
- Can’t install Docker on Windows 10 Home, need Pro or Enterprise
- Running a Custom Vision project in a local Docker Container
- Analyzing images in a Console App using a Custom Vision project in a Docker Container
- Analyzing images using PostMan from a Custom Vision project hosted in a Docker Container
- Building the CustomVision.ai project in Docker in a RaspberryPi
- Container dies immediately upon successful start in a RaspberryPi. Of course, it’s all about TensorFlow dependencies
- About ports, IPs and more to access a container hosted in a Raspberry Pi
- Average response times using a CustomVision.ai docker container in a RaspberryPi and a PC
Windows 10 and YOLOV2 for Object Detection Series
- Introduction to YoloV2 for object detection
- Create a basic Windows10 App and use YoloV2 in the camera for object detection
- Transform YoloV2 output analysis to C# classes and display them in frames
- Resize YoloV2 output to support multiple formats and process and display frames per second
- How to convert Tiny-YoloV3 model in CoreML format to ONNX and use it in a Windows 10 App
- Updated demo using Tiny YOLO V2 1.2, Windows 10 and YOLOV2 for Object Detection Series
- Alternatives to Yolo for object detection in ONNX format