#Event – 30 min de #MachineLearning.Net durante el evento en vivo @mvpdays (ahora mismo!)

aerial photo of mountain surrounded by fog
Photo by icon0.com on Pexels.com

Buenas !

en pocas horas dará comienzo un evento gratuito de formación: MVP Days.

Yo tuve la suerte de tener mis 30 minutos para hablar de Machine Learning.Net

Getting Started with Machine Learning.Net and Windows Machine Learning

Machine Learning has moved out of the lab and into production systems. Understanding how to work with this technology is one of the essential skills for developers today. In this session, you will learn the basics of machine learning, how to use existing models and services in your apps, and how to get started with creating your own simple models.
And if you are a .Net developer, we will cover the basis of Machine Learning.Net, a complete ML framework to work with C#, F# or any other .Net Core language.

Salvo yo, la agenda y speakers son geniales !

Happy Coding!

Saludos @ Toronto

El Bruno

Advertisements

#Event – 30 min of #MachineLearning.Net on the next @mvpdays on Jan 30!

aerial photo of mountain surrounded by fog
Photo by icon0.com on Pexels.com

Hi !

less than 24 hours for a full day of free training, take a look at MVP Days.

I was lucky enough to have my slot to share some experiences and a zero to one demo on Machine Learning.Net

Getting Started with Machine Learning.Net and Windows Machine Learning

Machine Learning has moved out of the lab and into production systems. Understanding how to work with this technology is one of the essential skills for developers today. In this session, you will learn the basics of machine learning, how to use existing models and services in your apps, and how to get started with creating your own simple models.
And if you are a .Net developer, we will cover the basis of Machine Learning.Net, a complete ML framework to work with C#, F# or any other .Net Core language.

You should really check the agenda, there are a lot of amazing topics and speakers !

Greetings @ Toronto

El Bruno

#Event – Resources for the session [Getting Started with Machine Learning.Net & Windows Machine Learning] on the Tech Valley .NET UG @TUVG

Hi!

Another post-event post, this time with a big thanks to Chris Miller (@anotherlab) and to all the members of the Tech Valley .NET User Group. We had an amazing time, via Skype in the session about Windows ML and Machine Learning.Net.

As usual, now it’s time to share slides, code and more.

Source Code GitHub https://github.com/elbruno/events/tree/master/2018%2012%2018%20TechValley%20NetUG%20MLNet

And some Machine Learning.Net resources:

Resources

Greetings @ Toronto

El Bruno

#MLNet – Looking at data in the Pipeline in version 0.7.0

Hi!

With the new changes In Machine Learning.Net with the 0.7.0 version, the ability to peek in the data while is processed in each step of the pipeline is a little more complicated. A while ago, explain how we could do this in the post [Understanding the step bystep of Hello World]. However, ML.Net now uses Lazy objects, so it is not possible to debug in this step-by-step mode.

One of the options that we have available, is detailed in the ML.Net Cookbook, in the section [How do I look at the intermediate data?] and a complete explanation can be read in [Schema comprehension in ML.NET]

Well, the machine Learning.Net team has created a series of operations that can help us with these scenarios in the class [https://github.com/dotnet/machinelearning-samples/blob/master/samples/csharp/common/ConsoleHelper.cs]. In the following example, based on the examples of my Machine Learning.Net sessions, I use these functions to display the first 4 rows of the initial data set and also to display the values created for the Features column

So far, it works 😀

Happy Coding.

Greetings @ Microsoft IoT

El Bruno

References

My Posts

#MLNet – Visualizando datos del Pipeline en la versión 0.7.0

Buenas!

Con los nuevos cambios en Machine Learning.Net con la versión 0.7.0, la capacidad dever paso a paso como los datos se procesan es un poco mas complicado. Hace untiempo, explique cómo podíamos hacer esto en el post [Understanding the step bystep of Hello World]. Sin embargo, ahora ML.Net utiliza Lazy objects, con lo que no es posible depurar en este modo paso a paso.

Una de las opciones que tenemos disponibles, se detalla en el ML.Net Cookbook, en la sección[How do I look at the intermediate data?] Y una explicación completa se puede leer en [Schema comprehension in ML.NET]

Pues bien, el equipo de Machine Learning.Net ha creado una serie de operaciones que pueden ayudarnos con estos escenarios en el repositorio de Samples en la clase [https://github.com/dotnet/machinelearning-samples/blob/master/samples/csharp/common/ConsoleHelper.cs]. En el siguiente ejemplo, basado en los ejemplos de mis sesiones de MachineLearning.Net, utilizo estas funciones para mostrar las primeras 4 filas del set de datos inicial y también para mostrar cómo se construyen los valores en la columna Features

Lo apuntare como una solución.

Happy Coding!

Saludos @ Microsoft IoT

El Bruno

References

My Posts

#Event – Resources for the session [Getting Started with Machine Learning.Net & Windows Machine Learning] on the Mississauga .NET User Group

Hi!

Another post-event post, this time with a big thanks to Obi (@ObiOberoi) and to all the members of the Mississauga .NET User Group. We had an amazing time a couple of days ago in the session about Windows ML and Machine Learning.Net.

As usual, now it’s time to share slides, code and more.

Source Code GitHub https://github.com/elbruno/events/tree/master/2018%2011%2022%20Mississauga%20MLNet

And some Machine Learning.Net resources:

Resources

Greetings @ Toronto

El Bruno

#Event – Materiales utilizados en la sesión [Getting Started with Machine Learning.Net & Windows Machine Learning] con el grupo de Mississauga .NET User Group

Buenas!

Momento de agradecer al amigo Obi (@ObiOberoi) y a los miembros del grupo Mississauga .NET User Group por el apasionante rato que pasamos hace unos dias hablando de Windows ML y de Machine Learning.Net.

Como es habitual, ahora es el momento de compartir slides y Source Code de los ejemplos comentados ayer.

Muchas gracias por las preguntas y por el Feedback, todos 5 estrellas!

Source Code GitHub https://github.com/elbruno/events/tree/master/2018%2011%2022%20Mississauga%20MLNet

A continuación algunos recursos que comente en durante la sesión:

Resources

Saludos @ Toronto

El Bruno

#MLNET – New version 0.7 for Machine Learning.Net (the perfect excuse to update my content for next events!)

auto auto racing automobile automotive
Photo by Pixabay on Pexels.com

Hi!

A few days ago, the Machine Learning Net. team published a new version, 0.7. I have not had time to thoroughly review the novelties of this version, however, I will update my session and demos to version 0.7 for the next session on November 22 in Mississauga

Getting Started with Machine Learning.Net & Windows Machine Learning https://www.meetup.com/MississaugaNETUG/events/255916993/ .

Cesar de la Torre and the ML.Net team have published a full post with the novelties of ML.Net 0.7 https://blogs.msdn.microsoft.com/dotnet/2018/11/08/announcing-ml-net-0-7-machine-learning-net/ and I reshare the important bullets, to be updated on my contents:

  •     Enhanced support for recommendation tasks with Matrix Factorization
  •     Enabled anomaly detection scenarios – detecting unusual events rel
  •     Improved customizability of ML pipelines
  •     x86 support
  •     NimbusML – experimental Python bindings for ML.NET
  •     Get started with ML.NET v07

And, finally, we change the address for the next event on November 14: Artificial Intelligence and Machine Learning in Azure https://www.meetup.com/The-Azure-Group-Meetup/events/bvvjnpyxpbsb/ .

Happy coding!

Greetings @ Toronto

El Bruno

References

My Posts

#MLNET – Novedades en la version 0.7 de Machine Learning.Net (la excusa perfecta para actualizar proximos eventos!)

auto auto racing automobile automotive
Photo by Pixabay on Pexels.com

Buenas!

Hace unos días se publico la version 0.7 de Machine Learning .Net. No he tenido tiempo de repasar a fondo las novedades de esta version, sin embargo, tendré actualizada mi sesión y demos a la version 0.7 para la próxima sesión el próximo 22 de Noviembre en Mississauga

Getting Started with Machine Learning.Net & Windows Machine Learning https://www.meetup.com/MississaugaNETUG/events/255916993/ .

Pues bien, Cesar De la Torre y el equipo de ML.Net han publicado un post completo con las novedades de ML.Net 0.7 https://blogs.msdn.microsoft.com/dotnet/2018/11/08/announcing-ml-net-0-7-machine-learning-net/ y me apunto los puntos importantes del post para repasar esta semana

  •     Enhanced support for recommendation tasks with Matrix Factorization
  •     Enabled anomaly detection scenarios – detecting unusual events rel
  •     Improved customizability of ML pipelines
  •     x86 support
  •     NimbusML – experimental Python bindings for ML.NET
  •     Get started with ML.NET v07

Y, por último, hemos cambiado la ubicación del evento Artificial Intelligence and Machine Learning in Azure https://www.meetup.com/The-Azure-Group-Meetup/events/bvvjnpyxpbsb/ del próximo 14 Noviembre.

Happy coding!

Saludos @ Toronto

El Bruno

References

My Posts

#Event – Getting Started with Machine Learning.Net & Windows Machine Learning on Nov 22 in Mississauga

abstract blackboard bulb chalk
Photo by Pixabay on Pexels.com

Hi !

So my friends from the Mississauga .Net User Group (link) were kind enough to invite me to host a session on November 22th, in TEK Systems in Mississauga. I’ll share some of the updates on ML.Net, currently in version 0.6 and some other very cool stuff around Microsoft and AI.

You can register to the event here and the formal description is:

Machine Learning has moved out of the lab and into production systems. Understanding how to work with this technology is one of the essential skills for developers today. In this session, you will learn the basics of machine learning, how to use existing models and services in your apps, and how to get started with creating your own simple models.
In other words, if you are a .Net developer, this session is for you. We will cover the basis of Machine Learning.Net, a complete ML framework to work with C#, F# or any other .Net Core language.

Happy coding!

Greetings @ Toronto

El Bruno