#MacOs – Where is my Putty? Need for SSH and RealVNC to connect to #RaspberryPi [experiences in Mac from a #Windows user]

Hi !

In my previous post I share the context on why I’m a total newbie into the MacOS world. So today, I want to share another experience when switching from Windows to Mac.

As my previous content, the need for a SSH client is based on my live demos on my Custom Vision event. (Remember, Custom Vision is one of the most amazing services in the Cognitive Services family)

At some part on my demo, I create a new Custom Vision project, I export the project as a Docker for Linux, and I make some changes to the Docker Image to be compiled and used on a Raspberry Pi.

I can access and control the Raspberry PI using RealVNC, which is available for for Windows and Mac, or I can also access the device using SSH (SSH stands for Secure Shell). The second option is usually more appealing, because is just a big console app and everyone can read the commands sent to the device.

So, on Windows I was using Putty for a long time. It’s very light and easy to use. However, the description of the product makes a very clear statement about the supported OS of Putty.

PuTTY is an SSH and telnet client, developed originally by Simon Tatham for the Windows platform. PuTTY is open source software that is available with source code and is developed and supported by a group of volunteers.

It was time to hit Bing and search for options or alternatives to Putty on MacOS. And this one was easy. After a couple of minutes I realized that I can use the standard MacOS terminal to connect to my device using SSH with a command like this one

MACTERMINAL:~ bruno.capuano$ ssh <DEVICE IP> -l <LOGIN NAME>

Once you enter the ssh command, with the IP and and the login name, it will promtp for the password and that’s it! I’m now connected to my device

 

01 doker build on mac

This one was easy !

Happy coding!

 

Greetings @ Burlington

El Bruno

References

Advertisements

#Docker – Sobre puertos, IPs y mas para acceder a un container alojado en #RaspberryPi

Buenas !

Mi proyecto de CustomVision.ai esta compilado y ejecutándose en Docker en Raspberry Pi 3. Ahora llega el momento de utilizar el mismo desde aplicaciones en otros dispositivos, y para este caso, todos en la misma red.

Cuando ejecute mi imagen, utilice parámetros para definir la IP y los mapeos de los puertos de la misma. El siguiente comando es muy útil para ver esta información en un container.

sudo docker port <CONTAINER ID>

01 docker port

Mi container esta registrado en la dirección IP 127.0.0.1 y utiliza el puerto 80. Esto es genial para procesos locales, sin embargo no permite que este container sea accedido desde otros devices.

Lo ideal es no registrar la direccion IP local 127.0.0.1 y solo definir el mapeo de puertos 80:80. En este caso ejecuto mi imagen con el siguiente comando

sudo docker run -p 80:80 -d <IMAGE ID>

02 docker port 80 and success run

El container utilizar el puerto 80, y Docker toma control de este puerto en la RaspberryPI. La dirección IP de la raspberry pi es [192.168.1.58], así que ya puedo realizar pruebas con Postman para analizar imágenes en la RPI.

03 docker image analysis from postman

Super cool. Un potente y barato server de análisis de imágenes basado en un proyecto de CustomVision por menos de $30 !

Happy coding!

Greetings @ Burlington

El Bruno

References

My Posts

  1. Object recognition with Custom Vision and ONNX in Windows applications using WinML
  2. Object recognition with Custom Vision and ONNX in Windows applications using WinML
  3. Object recognition with Custom Vision and ONNX in Windows applications using Windows ML, drawing frames
  4. Object recognition with Custom Vision and ONNX in Windows applications using Windows ML, calculate FPS
  5. Can’t install Docker on Windows 10 Home, need Pro or Enterprise
  6. Running a Custom Vision project in a local Docker Container
  7. Analyzing images in a Console App using a Custom Vision project in a Docker Container
  8. Analyzing images using PostMan from a Custom Vision project hosted in a Docker Container
  9. Building the CustomVision.ai project in Docker in a RaspberryPi
  10. Container dies immediately upon successful start in a RaspberryPi. Of course, it’s all about TensorFlow dependencies

Windows 10 and YOLOV2 for Object Detection Series

#Docker – About ports, IPs and more to access a container hosted in a #RaspberryPi

Hi !

So, my CustomVision.ai image is build and running in a container in my Raspberry Pi 3. It’s time to see if I can use it from other devices in the same network. When I run my image I defined IP and Port, but if you want to know these information, the following command is very useful

sudo docker port <CONTAINER ID>

01 docker port

So, my container is listening at 127.0.0.1 in port 80. That’s cool for local processing, however I want to access my container from other devices in the same network. In order to do this, I’ll run my image with the following command (I’m not defining the IP, just the port 80)

sudo docker run -p 80:80 -d <IMAGE ID>

02 docker port 80 and success run

The container is using the port 80, and docker is taking over this port in my device. My Raspberry PI device IP is [192.168.1.58], so I can go back and make some tests using Postman to analyze images in the device.

03 docker image analysis from postman

That’s cool. A small CustomVision image analyzer server for less than $30 !

Happy coding!

Greetings @ Toronto

El Bruno

References

My Posts

  1. Object recognition with Custom Vision and ONNX in Windows applications using WinML
  2. Object recognition with Custom Vision and ONNX in Windows applications using WinML
  3. Object recognition with Custom Vision and ONNX in Windows applications using Windows ML, drawing frames
  4. Object recognition with Custom Vision and ONNX in Windows applications using Windows ML, calculate FPS
  5. Can’t install Docker on Windows 10 Home, need Pro or Enterprise
  6. Running a Custom Vision project in a local Docker Container
  7. Analyzing images in a Console App using a Custom Vision project in a Docker Container
  8. Analyzing images using PostMan from a Custom Vision project hosted in a Docker Container
  9. Building the CustomVision.ai project in Docker in a RaspberryPi
  10. Container dies immediately upon successful start in a RaspberryPi. Of course, it’s all about TensorFlow dependencies

Windows 10 and YOLOV2 for Object Detection Series

#Docker – Container muere inmediatamente después de ser iniciado en #RaspberryPi. Obviamente, era un problema de dependencias de #TensorFlow

Buenas !

La creación de imágenes en Docker es un proceso divertido. Cuando cree la imagen de CustomVision.ai para ser ejecutada en Docker en Raspberry Pi, me encontré con unos errores interesantes, así que aprovechare este post para escribir sobre los mismos.

La compilación de cada imagen suele tardar alrededor de unos 15 minutos. Ver que la misma compila correctamente es un momento de alegría, que se veía arruinado cuando al momento intentar iniciarla, el container se destruía automáticamente. El comando con el que iniciaba el mismo es el siguiente

sudo docker run -p 127.0.0.1:8080:80 -d <IMAGE ID>

Estuve leyendo mucho y encontré varias opciones para intentar comprender que sucede. Al final opte por intentar analizar los eventos en tiempo real que Docker publica con el comando

sudo docker events&

01 docker events

En la consola podemos ver un buffer lleno de eventos de Docker. Después de varios intentos con mi imagen, me encontré con mensajes similares a los siguientes.

2019-02-12T07:34:46.195722938-05:00 container start cdcdcc410518db46e09967412bd583c33cff6f4e8eee0f10e8baeec860f9c9a2 (image=295, io.balena.architecture=armv7hf, io.balena.device-type=raspberry-pi2, io.balena.qemu.version=3.0.0+resin-arm, name=musing_zhukovsky)

2019-02-12T07:34:46.195722938-05:00 container die cdcdcc410518db46e09967412bd583c33cff6f4e8eee0f10e8baeec860f9c9a2 (image=295, io.balena.architecture=armv7hf, io.balena.device-type=raspberry-pi2, io.balena.qemu.version=3.0.0+resin-arm, name=musing_zhukovsky)

Es fácil interpretar que después de la fecha y hora del evento, la descripciones “container start” y “container die”, describen el comportamiento que estoy analizando. Estaba un poco mas cerca.

Sin embargo, el evento no presenta mucha información sobre el error. Es por esto, que utilizando el <LOG ID> podemos obtener mas información con el siguiente comando.

sudo docker logs cdcdcc410518db46e09967412bd583c33cff6f4e8eee0f10e8baeec860f9c9a2

02 docker event details

Esto ya es mucho mejor! Ya puedo ver un archivo de código fuente en python y ademas el error, que en este caso, se da al intentar importar el modulo Pillow. Ahora ya puedo abrir python y todo cobra sentido.

03 app python details

Pues bien, ahora solo queda ver las dependencias y herramientas que necesita TensorFlow para instalar las mismas en el orden correcto antes de compilar la imagen.

Happy coding!

Greetings @ Toronto

El Bruno

References

My Posts

  1. Object recognition with Custom Vision and ONNX in Windows applications using WinML
  2. Object recognition with Custom Vision and ONNX in Windows applications using WinML
  3. Object recognition with Custom Vision and ONNX in Windows applications using Windows ML, drawing frames
  4. Object recognition with Custom Vision and ONNX in Windows applications using Windows ML, calculate FPS
  5. Can’t install Docker on Windows 10 Home, need Pro or Enterprise
  6. Running a Custom Vision project in a local Docker Container
  7. Analyzing images in a Console App using a Custom Vision project in a Docker Container
  8. Analyzing images using PostMan from a Custom Vision project hosted in a Docker Container
  9. Building the CustomVision.ai project in Docker in a RaspberryPi

Windows 10 and YOLOV2 for Object Detection Series

#Docker – Container dies immediately upon successful start in a #RaspberryPi. Of course, it’s all about #TensorFlow dependencies

Hi !

Creating Docker images is a fun process. When I created the CustomVision.ai custom image to be executed in my Raspberry Pi, I faced a couple of errors, so now it’s time to save / share some lessons learned.

One of the most frustrating steps was after my 15 min wait time to build an image to find that the image was successfully built, however it dies after I run the image with a command like this one

sudo docker run -p 127.0.0.1:8080:80 -d <IMAGE ID>

There are a couple of options to understand what’s happen here. I decided to launch and trace the live events from Docker with the command

sudo docker events&

01 docker events

This windows is a full buffer of Docker events, after a while I detected that after I tried to start my docker image I got 2 messages similar to this one

2019-02-12T07:34:46.195722938-05:00 container start cdcdcc410518db46e09967412bd583c33cff6f4e8eee0f10e8baeec860f9c9a2 (image=295, io.balena.architecture=armv7hf, io.balena.device-type=raspberry-pi2, io.balena.qemu.version=3.0.0+resin-arm, name=musing_zhukovsky)

2019-02-12T07:34:46.195722938-05:00 container die cdcdcc410518db46e09967412bd583c33cff6f4e8eee0f10e8baeec860f9c9a2 (image=295, io.balena.architecture=armv7hf, io.balena.device-type=raspberry-pi2, io.balena.qemu.version=3.0.0+resin-arm, name=musing_zhukovsky)

As you probably detected (much faster than me!) the events were container start and container die. But the docker events does not display much more information with details of the event.

What we can use is the <LOG ID> included in the event line. And with the following command we can get more details of the event.

sudo docker logs cdcdcc410518db46e09967412bd583c33cff6f4e8eee0f10e8baeec860f9c9a2

02 docker event details

This is much better! Now I know that we can’t import a Python module named PIL on the file [app.py], in the line 10. When I open the file, it all makes sense.

03 app python details

So now it’s time to check the dependencies and tools required to use TensorFlow in a Raspberry Pi. I’ll write more about this tomorrow 😀

Happy coding!

Greetings @ Toronto

El Bruno

References

My Posts

  1. Object recognition with Custom Vision and ONNX in Windows applications using WinML
  2. Object recognition with Custom Vision and ONNX in Windows applications using WinML
  3. Object recognition with Custom Vision and ONNX in Windows applications using Windows ML, drawing frames
  4. Object recognition with Custom Vision and ONNX in Windows applications using Windows ML, calculate FPS
  5. Can’t install Docker on Windows 10 Home, need Pro or Enterprise
  6. Running a Custom Vision project in a local Docker Container
  7. Analyzing images in a Console App using a Custom Vision project in a Docker Container
  8. Analyzing images using PostMan from a Custom Vision project hosted in a Docker Container
  9. Building the CustomVision.ai project in Docker in a RaspberryPi

Windows 10 and YOLOV2 for Object Detection Series

#CustomVision – Compilar el proyecto de CustomVision en #Docker en una #RaspberryPi

Buenas !

Después de compilar y utilizar el modelo exportado de CustomVision.ai en Windows y Linux, el siguiente paso es intentarlo en una RaspberryPi (RPI). Desde hace un tiempo RPI soporta docker, así que intentare tomar la imagen de Linux y modificar la misma para que funcione en la RPI.

Este es el contenido del [DockerFile] original que se ha exportado para Linux

FROM python:3.5

ADD app /app

RUN pip install --upgrade pip
RUN pip install -r /app/requirements.txt

# Expose the port
EXPOSE 80

# Set the working directory
WORKDIR /app

# Run the flask server for the endpoints
CMD python app.py

En este archivo se utiliza una imagen base de python 3.5 para Linux. Navegando en los repositorios de Docker Hub y leyendo en la comunidad de Docker, he encontrado algunas imágenes base para RPI de Balena (link), see references.

La imagen que utilizare se llama [balenalib/raspberrypi3]. La misma solo posee Linux, sin nada de software instalado. Me he basado en parte  de los ejemplos de [Custom Vision + Azure IoT Edge on a Raspberry Pi 3] para instalar a mano el software necesario para que un proyecto de CustomVision.ai funcione en RPI.

FROM balenalib/raspberrypi3

RUN apt-get update &&  apt-get install -y \
        python3 \
        python3-pip \
        build-essential \
        python3-dev \
        libopenjp2-7-dev \
        libtiff5-dev \
        zlib1g-dev \
        libjpeg-dev \
        libatlas-base-dev \
        wget 

RUN pip3 install --upgrade pip 
RUN pip3 install pillow numpy flask tensorflow

RUN pip3 install flask 
RUN pip3 install pillow
RUN pip3 install numpy
RUN pip3 install tensorflow

ADD app /app

EXPOSE 80

WORKDIR /app

CMD python3 app.py

El proceso completo de compilación de la imagen en la RPI tarda unos 10 o 15 minutos, así que es la excusa perfecta para tomar un café, un te, o lo que gustes.

01 docker raspberry pi build

Una vez que el proceso esta completo, ya podemos ver la imagen en la lista de imágenes locales en Docker en RPI. Es el momento de ejecutar la misma, en el puerto 8080

02 docker raspberry pi image built

Y utilizando un comando cURL podemos probar el análisis de la imagen en local en la RPI!

01 raspberry pi docker image analyzed

Happy coding!

Saludos @ Toronto

El Bruno

References

My Posts

  1. Object recognition with Custom Vision and ONNX in Windows applications using WinML
  2. Object recognition with Custom Vision and ONNX in Windows applications using WinML
  3. Object recognition with Custom Vision and ONNX in Windows applications using Windows ML, drawing frames
  4. Object recognition with Custom Vision and ONNX in Windows applications using Windows ML, calculate FPS
  5. Can’t install Docker on Windows 10 Home, need Pro or Enterprise
  6. Running a Custom Vision project in a local Docker Container
  7. Analyzing images in a Console App using a Custom Vision project in a Docker Container
  8. Analyzing images using PostMan from a Custom Vision project hosted in a Docker Container

Windows 10 and YOLOV2 for Object Detection Series

#CustomVision – Building the CustomVision project in #Docker in a #RaspberryPi

Hi !

So my next step in my build process is to host the CustomVision.ai exported model in a RaspberryPi (RPI). RPI supports docker, so it should be easy to work with the exported Linux image.

So let’s take a look at the original [DockerFile] in the Linux export

FROM python:3.5

ADD app /app

RUN pip install --upgrade pip
RUN pip install -r /app/requirements.txt

# Expose the port
EXPOSE 80

# Set the working directory
WORKDIR /app

# Run the flask server for the endpoints
CMD python app.py

This file uses a standard python 3.5 linux image as base. However browsing in the docker community, I found a specific set of base image for RaspberryPi in the Docker Hub from Balena (link), see references.

So, using this base image and some resources from [Custom Vision + Azure IoT Edge on a Raspberry Pi 3] I make some changes to the DockerFile to create a running image for RPI.

FROM balenalib/raspberrypi3

RUN apt-get update &&  apt-get install -y \
        python3 \
        python3-pip \
        build-essential \
        python3-dev \
        libopenjp2-7-dev \
        libtiff5-dev \
        zlib1g-dev \
        libjpeg-dev \
        libatlas-base-dev \
        wget 

RUN pip3 install --upgrade pip 
RUN pip3 install pillow numpy flask tensorflow

RUN pip3 install flask 
RUN pip3 install pillow
RUN pip3 install numpy
RUN pip3 install tensorflow

ADD app /app

EXPOSE 80

WORKDIR /app

CMD python3 app.py

The full build process takes a couple of minutes, so you may want to have a coffee or a tea during the build process.

01 docker raspberry pi build

Once the process is complete, we can find the built and run the image from the docker image list

02 docker raspberry pi image built

Next step is to try the remote container with a single cURL command and done!

01 raspberry pi docker image analyzed

Happy coding!

Greetings @ Toronto

El Bruno

References

My Posts

  1. Object recognition with Custom Vision and ONNX in Windows applications using WinML
  2. Object recognition with Custom Vision and ONNX in Windows applications using WinML
  3. Object recognition with Custom Vision and ONNX in Windows applications using Windows ML, drawing frames
  4. Object recognition with Custom Vision and ONNX in Windows applications using Windows ML, calculate FPS
  5. Can’t install Docker on Windows 10 Home, need Pro or Enterprise
  6. Running a Custom Vision project in a local Docker Container
  7. Analyzing images in a Console App using a Custom Vision project in a Docker Container
  8. Analyzing images using PostMan from a Custom Vision project hosted in a Docker Container

Windows 10 and YOLOV2 for Object Detection Series

#Event – I’ll be at @CodeMash on Ohio in 17 days sharing some #AI and #CustomVision experiences

codemash-logo

Hi!

I’m going to be part of one of the most amazing developer events in NA: CodeMash (http://www.codemash.org/). It will be my first time in Ohio, and also it will be an amazing opportunity to network and have some face-to-face chats with some amazing people. (Just look at the Speaker List)

I was also lucky to host a session around Artificial Intelligence with Cognitive Services at Enterprise Level. The latest announcements of containers and Cognitive Services are ready on time for this!

How a PoC at home can scale to Enterprise Level using Custom Vision APIs

It all started with a DIY project to use Computer Vision for security cameras at home. A custom Machine Learning model is the core component used to analyze pictures to detect people, animals and more in a house environment. The AI processing is performed at the edge, in dedicated hardware and the collected information is stored in the cloud.
The same idea can be applied to several CCTV scenarios, like parking lots, train stations, malls and more. However, moving this into enterprise scale brings a set of challenges, which are going to be described and explained in this session.

Session List: http://www.codemash.org/session-list/

Happy coding and see you there!

Greetings @ Toronto

El Bruno

#Windows10 – IoT Core, first look to IoT Dashboard, Device Portal and Remote Client

Hello!

After review some of the updates for Windows 10 IoT Core, I realized the new app for managing Windows 10 IoT Core devices is great.

Setup a new Device

The creation of the image to the SD card that will be used in a device is quite simple. From the following view we can

  • Select the type of Raspberry Pi 2 or 3, Minnoboard Max, Qualcomm Dragon Board 410 c or custom
  • Select the version of OS that you want to use, stable or prereleases
  • Select the disk where you want to save this image
  • Define the name of the device and set the password if you want to use one

image

Once we have defined these values, in few minutes you can have our SD list to use.

My Devices

The next step is to initialize the device. The main constrains here is to be in the same network, once we are in the same network can see the devices in the [My Devices] section.

image

In each device, we will be able to

  • Open the device management portal
  • Launch PowerShell
  • Open a network share against the device
  • Copy your IP address or name
  • Access the settings to change the name

image

Device Portal

This section deserves a full post, there are plenty of new options, which are very useful.

image

I share some of which are more useful

  • Pair BlueTooth devices directly from the portal

image

  • Define network profiles and connect to WiFi networks

image

  • Access and download updates from Windows Update for Windows 10 IoT Core

image

  • Configure a hotspot for sharing internet access directly from the device

image

  • Configure TPM and finally launch the remote client

Remote Client

One of the most interesting options we have in this version is the ability to have a Remote Client for our device. This remote client is a Universal App called Windows IoT Remote Client

image

Once launched the app, we can use the name or the IP address of our device to connect

image

And once connected, we have total control of what shows our device.

image

I think that is a new review of the most interesting stuff.

And, yes, the AZURE section also deserves a separate post.

Greetings @ Toronto

El Bruno

References

#Windows10 – What’s new in #IoT Core version

Clipboard02

Hi !

Windows 10 Anniversary Update is here and there are lot of news to write about. I’ve already wrote about some of the new Hololens features, and I need to write down also some important topics related to Windows 10 IoT Core and Anniversary Update.

So let’s start with the basis: the main image and news are always focused on Raspberry Pi 3, however the Anniversary Update will also work with the MinnowMax, Raspberry Pi 2, and DragonBoard 410c developer boards. The new Getting Started section is a really nice step by step tutorial to setup the device much faster.

And finally, my selected set of top new features are:


  • Windows IoT Remote Client – remote into your IoT device to control and view what is displayed on your IoT device from your desktop or phone
  • Store integration – connect Windows 10 IoT Core to the store to service applications
  • Better Azure IoT Hub connectivity – provision your device with a device identity in the cloud

 

Greetings @ Toronto

El Bruno

References