#AI – Multi-Task Deep Neural Networks para Natural Language Understanding

goku at keyboard

Buenas !

Un equipo de Microsoft Research ha lanzado una nueva Deep Neural Network para el aprendizaje de universal language embbedings: Multi-Task Deep Neural Networks for Natural Language Understanding (MT-DNN).  Language embbedings es un proceso que se utiliza para asignar elementos en sentencias o párrafos a representaciones vectoriales. Esto se utiliza principalmente en herramientas como LUIS (Language Understanding) para analizar texto e identificar intenciones, entidades y más.

Una descripción completa de MT-DNN se puede encontrar en el blog oficial de Microsoft Research (ver referencias). Me pareció interesante que el enfoque es añadir un modelo de lenguaje transformador bidireccional pre-entrenado, conocido como BERT, desarrollado por Google AI.

Como de costumbre, el código, basado en PyTorch, está disponible en GitHub: https://github.com/namisan/MT-DNN. El repositorio contiene los modelos previamente entrenados, el código fuente y el archivo Léame que describe paso a paso cómo reproducir los resultados notificados en el MT-DNN paper,

Más información: Towards universal language embeddings

Saludos @ Toronto

El Bruno

References

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.