#RPi – Some #RaspberryPi screen options and how to quickly find your device IP with #RaspberryPi Finder from @Adafruit

Hi !

Today’s post is about my experience doing presentations and demos with a Raspberry Pi.

Doing demos with a Raspberry Pi is amazing. I really enjoy share some of the amazing stuff we can do with the device, and usually there is one or two people in the audience who can share other even better Raspberry Pi experiences.

The only issue that you find in this scenarios is an easy way to connect your device to an internet connection. Sometimes, using a standard network cable between your laptop and the device is good enough, however there are other scenarios where connecting to a network is more complicated. In example: the Raspberry Pi connects automatically to a WiFi network, and you need to find the IP address to interact with the device.

These days, I ordered a Raspberry Pi 3 case with includes a 3.5 inches TFT screen, also with touch capabilities. I hope that, using this and a Bluetooth keyboard should make my life easier. (see references)

Sometimes you can’t connect your device to a HDMI screen, so a good option is to bring your own 7 inches screen for the device. For me, this is not optimal, because I need to handle a lot of cables, but it works every-time!

The following image show my typical hotel bedroom when I’m speaking and using a Raspberry Pi. Laptop, Raspberry Pi, Bluetooth keyboard, a mouse, the 7 inches screen, and more.

Finally, if your device is connected to the same wireless network but you don’t know the IP address, you may want to use a tool like Adafruit Raspberry Pi Finder. It only requires 2 clicks to find one or more devices in your network.

I’ll leave this here, and maybe in the near future I’ll update this posts with my experiences using the small case with TFT screen.

Happy coding!

Greetings @ Burlington

El Bruno

References

Advertisements

#Docker – Sobre puertos, IPs y mas para acceder a un container alojado en #RaspberryPi

Buenas !

Mi proyecto de CustomVision.ai esta compilado y ejecutándose en Docker en Raspberry Pi 3. Ahora llega el momento de utilizar el mismo desde aplicaciones en otros dispositivos, y para este caso, todos en la misma red.

Cuando ejecute mi imagen, utilice parámetros para definir la IP y los mapeos de los puertos de la misma. El siguiente comando es muy útil para ver esta información en un container.

sudo docker port <CONTAINER ID>

01 docker port

Mi container esta registrado en la dirección IP 127.0.0.1 y utiliza el puerto 80. Esto es genial para procesos locales, sin embargo no permite que este container sea accedido desde otros devices.

Lo ideal es no registrar la direccion IP local 127.0.0.1 y solo definir el mapeo de puertos 80:80. En este caso ejecuto mi imagen con el siguiente comando

sudo docker run -p 80:80 -d <IMAGE ID>

02 docker port 80 and success run

El container utilizar el puerto 80, y Docker toma control de este puerto en la RaspberryPI. La dirección IP de la raspberry pi es [192.168.1.58], así que ya puedo realizar pruebas con Postman para analizar imágenes en la RPI.

03 docker image analysis from postman

Super cool. Un potente y barato server de análisis de imágenes basado en un proyecto de CustomVision por menos de $30 !

Happy coding!

Greetings @ Burlington

El Bruno

References

My Posts

  1. Object recognition with Custom Vision and ONNX in Windows applications using WinML
  2. Object recognition with Custom Vision and ONNX in Windows applications using WinML
  3. Object recognition with Custom Vision and ONNX in Windows applications using Windows ML, drawing frames
  4. Object recognition with Custom Vision and ONNX in Windows applications using Windows ML, calculate FPS
  5. Can’t install Docker on Windows 10 Home, need Pro or Enterprise
  6. Running a Custom Vision project in a local Docker Container
  7. Analyzing images in a Console App using a Custom Vision project in a Docker Container
  8. Analyzing images using PostMan from a Custom Vision project hosted in a Docker Container
  9. Building the CustomVision.ai project in Docker in a RaspberryPi
  10. Container dies immediately upon successful start in a RaspberryPi. Of course, it’s all about TensorFlow dependencies

Windows 10 and YOLOV2 for Object Detection Series

#Docker – About ports, IPs and more to access a container hosted in a #RaspberryPi

Hi !

So, my CustomVision.ai image is build and running in a container in my Raspberry Pi 3. It’s time to see if I can use it from other devices in the same network. When I run my image I defined IP and Port, but if you want to know these information, the following command is very useful

sudo docker port <CONTAINER ID>

01 docker port

So, my container is listening at 127.0.0.1 in port 80. That’s cool for local processing, however I want to access my container from other devices in the same network. In order to do this, I’ll run my image with the following command (I’m not defining the IP, just the port 80)

sudo docker run -p 80:80 -d <IMAGE ID>

02 docker port 80 and success run

The container is using the port 80, and docker is taking over this port in my device. My Raspberry PI device IP is [192.168.1.58], so I can go back and make some tests using Postman to analyze images in the device.

03 docker image analysis from postman

That’s cool. A small CustomVision image analyzer server for less than $30 !

Happy coding!

Greetings @ Toronto

El Bruno

References

My Posts

  1. Object recognition with Custom Vision and ONNX in Windows applications using WinML
  2. Object recognition with Custom Vision and ONNX in Windows applications using WinML
  3. Object recognition with Custom Vision and ONNX in Windows applications using Windows ML, drawing frames
  4. Object recognition with Custom Vision and ONNX in Windows applications using Windows ML, calculate FPS
  5. Can’t install Docker on Windows 10 Home, need Pro or Enterprise
  6. Running a Custom Vision project in a local Docker Container
  7. Analyzing images in a Console App using a Custom Vision project in a Docker Container
  8. Analyzing images using PostMan from a Custom Vision project hosted in a Docker Container
  9. Building the CustomVision.ai project in Docker in a RaspberryPi
  10. Container dies immediately upon successful start in a RaspberryPi. Of course, it’s all about TensorFlow dependencies

Windows 10 and YOLOV2 for Object Detection Series